The impairment of methylmenaquinol:fumarate reductase affects hydrogen peroxide susceptibility and accumulation in Campylobacter jejuni

نویسندگان

  • Issmat I Kassem
  • Mahesh Khatri
  • Yasser M Sanad
  • Melinda Wolboldt
  • Yehia M Saif
  • Jonathan W Olson
  • Gireesh Rajashekara
چکیده

The methylmenaquinol:fumarate reductase (Mfr) of Campylobacter jejuni is a periplasmic respiratory (redox) protein that contributes to the metabolism of fumarate and displays homology to succinate dehydrogenase (Sdh). Since chemically oxidized redox-enzymes, including fumarate reductase and Sdh, contribute to the generation of oxidative stress in Escherichia coli, we assessed the role of Mfr in C. jejuni after exposure to hydrogen peroxide (H2 O2 ). Our results show that a Mfr mutant (∆mfrA) strain was less susceptible to H2 O2 as compared to the wildtype (WT). Furthermore, the H2 O2 concentration in the ∆mfrA cultures was significantly higher than that of WT after exposure to the oxidant. In the presence of H2 O2 , catalase (KatA) activity and katA expression were significantly lower in the ∆mfrA strain as compared to the WT. Exposure to H2 O2 resulted in a significant decrease in total intracellular iron in the ∆mfrA strain as compared to WT, while the addition of iron to the growth medium mitigated H2 O2 susceptibility and accumulation in the mutant. The ∆mfrA strain was significantly more persistent in RAW macrophages as compared to the WT. Scanning electron microscopy showed that infection with the ∆mfrA strain caused prolonged changes to the macrophages' morphology, mainly resulting in spherical-shaped cells replete with budding structures and craters. Collectively, our results suggest a role for Mfr in maintaining iron homeostasis in H2 O2 stressed C. jejuni, probably via affecting the concentrations of intracellular iron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni.

Microaerophiles like Campylobacter jejuni must resist oxidative stresses during transmission or infection. Growth of C. jejuni 81116 under iron limitation greatly increased the expression of two polypeptides of 26 and 55 kDa. The identification of these proteins by N-terminal amino acid sequencing showed both to be involved in the defense against oxidative stress. The 55-kDa polypeptide was ide...

متن کامل

Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor.

Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open readin...

متن کامل

Detection of multi-antibiotic resistant Campylobacter coli and Campylobacter jejuni in beef, mutton and chicken and water buffalo meat in Ahvaz, Iran

Campylobacter jejuni and C. coli are the main causes of gastrointestinal diseases in humans even in industrialized countries affecting public health. The aim of the current study was to evaluate the occurrence and antibiotic resistance of C. jejuni and C. coli in chicken meat, beef, mutton and water buffalo meat slaughtered in Ahvaz city, Iran. A total of 380...

متن کامل

Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni.

Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have no...

متن کامل

Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni.

The microaerophilic food-borne pathogen Campylobacter jejuni is exposed to highly variable oxygen concentrations during its life cycle and employs a variety of protection mechanisms to resist oxidative stress. However, not all of the enzymes that mediate such protection have yet been identified. Two genes in strain NCTC 11168, Cj0637c and Cj1112c, are predicted to encode unrelated methionine su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014